Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method
نویسندگان
چکیده
منابع مشابه
Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows
We propose a hybrid lattice-Boltzmann finite-difference method to simulate axisymmetric multiphase flows. The hydrodynamics is simulated by the lattice-Boltzmann equations with the multiple-relaxation-time (MRT) collision model and suitable forcing terms that account for the interfacial tension and axisymmetric effects. The interface dynamics is captured by the finitedifference solution of the ...
متن کاملMultiple - Relaxation - Time Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios - 10135
In this paper, the lattice Boltzmann method is reviewed for specific applications to numerical simulation of multiphase flow problems. A thorough literature review regarding the multi-phase lattice Boltzmann method was conducted with special focus on flows with large density and viscosity ratios between the two phases. A multiphase model with the capability of handling large-density-ratios is c...
متن کاملA weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades
Article history: Received 21 April 2016 Received in revised form 22 February 2017 Accepted 31 March 2017 Available online 4 April 2017
متن کاملAxisymmetric multiphase lattice Boltzmann method.
A lattice Boltzmann method for axisymmetric multiphase flows is presented and validated. The method is capable of accurately modeling flows with variable density. We develop the classic Shan-Chen multiphase model [Phys. Rev. E 47, 1815 (1993)] for axisymmetric flows. The model can be used to efficiently simulate single and multiphase flows. The convergence to the axisymmetric Navier-Stokes equa...
متن کاملHydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2019
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.5087266